Thoughts on music recommender systems

for personalized radio stations

Andre Wiethoft
April 2015
streaming@exactaudiocopy.de

1 Introduction

As the amount of musical works grows steadily, it
becomes very hard for a music lover to find (new)
songs of which he would be fond of. Currently ra-
dio stations occupy a specific niche, they usually
play songs that are liked by a specific group of lis-
tener (most of them serve various partitions of Pop
content).

Online streaming services are booming, which al-
low users to create adaptive radio channels based on
genre, band or song similarity, etc. which promise
to generate a better experience than radio, as the
song recommendations are tailored for the specific
user. Most often that promise can’t be kept, but
some streaming services provide better recommen-
dations than others. This analysis will try to find
tools that could be helpful in improving the recom-
mendation performance.

Please remark that this paper is not a research
paper, as it does not live up to even very basic re-
search standards. Citation would need to be much
more precise and quite some sources are not listed
at all. Further, claims are made, but no exper-
iments have actually proved their correctness. It
is just an analysis of potential problems in a kind
of thought experiment and solutions that could be
used on creating music recommender systems. This
paper was written in only a few week’s time, there-
fore the standard might not be as high as a research
paper. Also the structure of the paper could have
been further optimized as there are e.g. repetitions
throughout the text, but the present form is due to
the limited time spent on the creation of the paper.

Chapter 2 contains a very short overview over
currently researched automatic music description
algorithms. Most of the content in this chapter is
work from various other papers available in the re-
search community, but which are not completely
cited. A small excerpt of the used research papers

is listed in the addendum.

Then follows a chapter which puts the consumer
into the center of the analysis and show the pos-
sible needs of such a user regarding personal radio
stations.

Some possible implementation details, which are
necessary to build a functional personal radio sta-
tion, will be discussed in chapter 4.

Finally there will be some concluding comments
and an addendum with some few external refer-
ences.

2 Automatic music metadata
retrieval

When trying to implement a recommendation en-
gine, often the recommendations are based on al-
gorithmic features of the music data itself. Other
researchers use collaborate information or analy-
sis of available (textual) metadata. The following
sub-chapters will give a small overview of research
fields which is not complete at all. Basically all pre-
sented information in this chapter is gathered from
research papers, only some small parts are my own
work.

2.1 Dynamics

Song matching could depend on the dynamic range
of a musical piece. A romantic song followed by
some death metal piece clearly doesn’t fit the needs
of a listener. Songs in a playlist should match the
dynamic range of each other at least roughly.
Comparing two songs regarding their dynamic
range could be a bit more difficult if one of the songs
has applied a dynamic range compression, which
could alter the dynamics dramatically. Therefore
an applied compression should be detected (if possi-
ble) and be removed/compensated for comparison.

Page 1

A possible algorithm for comparing dynamics will
be discussed in the next chapter.

2.2 BPM detection

Likewise, songs in the same playlist should be
of similar speed. In earlier times the Beats-Per-
Minute (BPM) indicator was used to describe the
tempo of a given song, but they realized that
nearly no song has the same speed in all parts
and some songs even do not have real beats (e.g.
chill-out/ambient music). Even worse are classical
pieces, where the speed changes very often radically.

Thus it would be possible to specify the parts
of the given song which have the same speed and
set a kind of BPM value for each part. On the
other hand, a tempo indicator for the whole song
would sometimes be more favorable (e.g. in order
to calculate the tempo similarity of two songs).

Therefore I propose to use a vector of tempo in-
formation (each bin contains the share of beats of
a given tempo). The first bins contain very slow
beats, while the last bins receive information about
very fast beats. Whether the beats (or for that
matter: tone changes) occur at a quarter note, half
note or eighth note doesn’t matter, as only the beat
intensity that occurs on such a beat will be added
up in the bin. This should give a more intuitive
approach to beats (and beat energy).

For that we need to set a valid range of BPM
values, most probably values around 50-320 BPM
will do. First of all it is important to normalize
each song to a given loudness (e.g. using RMS).
After that, we perform an autocorrelation on the
derivative of the energy values of the song (which
is 44.1 kHz downmixed to mono in the following
examples), we only store correlation coefficients in
the given range (50 BPM translates to W sam-
ples and 320 BPM translates to 44130% samples).
Therefore we only check the autocorrelation coeffi-
cients between 8268 and 52920 samples. In order
to speed up processing we could use the STFT to
calculate the autocorrelation efficiently and use a
sound step size. The results are smoothed using an
adaptive Gaussian blur. As we want to use equidis-
tant BPM values, which differ greatly on both ends
of the autocorrelation bins (e.g. between 50 and
60 BPM there are 441508‘60 - 44138'60 = 8820 sam-
ples and between 300 BPM and 310 BPM there are
4410060 _ 4410060 — 985 samples). Finally we sam-
ple e.g. 16 bins from the smoothed curve.

Similarly we are able to calculate a histogram of
loudness. We determine the loudness of a small
piece of sound (in dB) and storing it in a given bin

(higher than the desired output resolution). Then
the sample count of all bins needs to be normalized
in order to reflect differences in song length. Af-
terwards a constant Gaussian blur is applied and
sampled anew using 16 bins in this experiment.

Figure 1 shows the results of four different musi-
cal pieces.

”Nothing Else Matters” from Metallica is a metal
ballad. Even though the main BPM is 142 (prior
knowledge), the intensity (the result of the autocor-
relation) is not very high, meaning that the beat
is not very strong. It also has a smaller spike at
around half the BPM, which tells that there are
also beats generated by twice as long notes (and by
a high autocorrelation in a distance of two quarter
notes). The spikes around 300 BPM are most prob-
ably due to the vocals of the song. The loudness
histogram tells that there are quite some low loud-
ness parts (in particular the beginning of the song)
and that the overall loudness is only medium.

In contrast the song ”Welcome To Hell” from
Sum 41 is a real fast (168 BPM) and aggressive
song, the vocals are more or less only yelling. This
is also deducible by the speed diagram; there is a
real hard main beat at the given BPM and it even
contains a part of very high BPM. The loudness
histogram also reflects this, as it has the highest
loudness of all songs.

Ambient music often is pretty soft without hard
beats. We process the song ”Summer Breeze” from
Blank & Jones. I would guess it has a main beat
at 74 BPM and also an auxiliary BPM at twice
the speed. But the diagram shows that the beats
at 148 BPM are more (or louder), therefore this
song shows that a simple BPM detection algorithm
could fail on detecting the correct BPM. The loud-
ness histogram tells that the song has an average
loudness, the loudness levels seem to flow within
the song without too much up or down.

The last figures show a classical piece, the Allegro
from the 5th Symphony from Beethoven. Exactly
as expected, the BPMs are nearly a flat line. This
is not due to the fact that there are no beats in
the symphony, but that the speeds are varying so
much that on average the piece contains the given
beat half of the time and not for the rest. In fact,
if applying the algorithm on an excerpt of one of
the main themes of the Allegro, the BPM diagram
shows much higher peaks. The loudness diagram is
also as expected quite equally distributed over the
different loudness levels.

In order to compare two diagrams you would e.g.
use RMS of the differences of all levels to determine
a kind of similarity in speed and dynamics.

Page 2

Metallica - Nothing Else Matters (Speed Diagram)
— T T T T T T T T

Metallica - Nothing Else Matters (Loudness Histogram)

Intensity

Count

b

S S S S S
s N = 8 o @ 3 2 8 3 & § o 8 8 =
o ~ @ o o o 0 =~ @© o g @ 0 © @ o Quiet
s 8 8 8 5 3¢ &8 8 & ¢ 8 8
BPM Loudness

Figure 1: Speed and loudness diagrams of various musical pieces

S S S S S S S R .
B R 8 8 § 8 ¥ R 8 8 8 8 83 8 8 8 Quiet Loud
S 8 2 2 5 % 8 8 8 & 8 8 8
BPM Loudness
Sum 41 - Welcome To Hell (Speed Diagram) Sum 41 - Welcome To Hell (Loudness Histogram)
U T T T T T T T T
2 =
3 £
g 3
£ o
S S S S S R S R .
B R 8 8 § 8 ¥ R 8 8 R 8 3 8 8 8 Quiet Loud
S 8 2 2 5 % 8 8 8 & 8 8 8
BPM Loudness
Blank & Jones - Summer Breeze (Speed Diagram) Blank & Jones - Summer Breeze (Loudness Histogram)
— T T T T T T T T T T T
2 =
g 3
£ o
S S S S S S R .
B R 8 8 § 8 3 R 8 8 R 8 3 8 8 8 Quiet Loud
S 8 2 2 5 2 8 8 8 & 8 8 8
BPM Loudness
Beethoven - 5th Symph. Allegro (Speed Diagram) Beethoven - 5th Symph. Allegro (Loudness Histogram)
—T T T T T T T T T T T T T
2 =
g 3
£ o
—
Loud

Page 3

Overall it might be a good idea to split the song
into several (equally long) parts and determine the
levels of each diagram for each part. Afterwards the
average and standard deviation of each level might
be a better parametrization.

2.3 Melody extraction

Extracting the melody of a song (or any other
track) is quite difficult. Most music is a complex
mixture of various sound sources, including har-
monic instruments, percussion and vocals. There
are algorithms that try to separate the mixture into
single tracks (like Nonnegative Matrix Factoriza-
tion and others). Anyway, none of them works per-
fectly (as even the ear is not always able to separate
two sound sources perfectly). Therefore it is a hard
task to identify the melody track and retrieve the
duration and pitch of each note. If the melody could
be extracted, it might be used for further analysis
(e.g. to try to estimate the emotional perception of
the song).

2.4 Chord extraction (major / minor
scales)

A similar problem is to detect chords in a given
song. Using the melody and the chords it is possi-
ble to determine the scale of the song. Using the
scale information it would be possible to have a
rough estimation of what kind of emotion is asso-
ciated with it. Finding similar songs depending on
their scales would be difficult, as the algorithms are
far from perfect and the scale alone is only a weak
indication of a songs emotional topic.

2.5 Instrument detection

An operative instrument detection would produce
even more useful information. E.g. each genre often
uses a specific set of instruments. Using the instru-
ment and tempo/dynamics information we would
be able to identify the songs genre with only little
degree of uncertainty. Again, the extraction of in-
struments from a mix of instruments and vocals are
not easy, as already described earlier.

Technically, the result of the instrument detec-
tion should be a value between 0 and 1, which de-
scribes how much and how intense the instrument
is audible. A solo instrument should have a pretty
high value (or marked special otherwise), while all
unused instruments should be around 0.

Sometimes it will not be possible even to a hu-
man expert to differentiate several individual in-

struments from a mix. One possibility is to exam-
ine the whole file in order to find places where the
detection for a given instrument is easier.

Another approach would be to check for instru-
ment mixes instead of single instruments. The
downside is of course that the number of different
mixes increases very fast with each additional in-
strument.

2.6 Singer detection (male / female
/ duet / choir)

Also important is the detection of the vocals of the
song. Of most importance is the gender of the
artist(s) and whether it is a duet or even a choir
(male/female/mixed). From the field of speech
recognition there exist quite good algorithms to de-
tect the gender of a speaker (and if there is no back-
ground music also from vocals).

Even the used language(s) can be detected to
some extent, but for now it will not be possible to
detect the lyrics automatically from a song (which
isn’t possible for some songs even for human listen-
ers).

2.7 Genre detection

This is one of the main topics in automatic song
metadata creation. Determination of the genre of
a given song would help greatly to classify the song
into one or more groups. Again, the result should
be a value of 0 to 1, so that a song could be 80%
Pop and also 50% Rock and 10% Metal.

For that, it is rather difficult to find a (large) set
of songs for which the ground truth is known. This
is what music experts must provide and with which
a machine learning algorithm need to be fed. For
such, nearly all outputs of other analysis tools (like
instrument detection, speed, dynamics, etc.) are
useful inputs.

Anyway, some genres are very hard to detect au-
tomatically, e.g. Children or Christmas. Modern
Children songs often sound like Pop and also quite
some Christmas songs are also of genre Rock or
Pop. Even worse, there are songs which are not of
Christmas genre, but perceived by the listeners in
that way (e.g. ”"Last Christmas” from Wham!, as
the story line takes place around Christmas time).

Experiments have shown that algorithms are bet-
ter in telling whether the song is of a special sub-
genre instead of a main-genre. E.g. a machine
learning algorithm has better results in predicting
whether a song is Progressive Rock instead of telling
whether it is Rock, as the differences between the

Page 4

various sub-genres are sometimes too large in order
to find a good boundary for the main-genre. From
the sub-genres it is then possible to assign a song
to the main-genres.

2.8 Song lyrics analysis

The analysis of the lyrics is often helpful to deter-
mine the genre or the emotional effect. But there
are three downsides with lyrics: they can’t be gen-
erated from the audio data easily (at least for quite
some time coming), some songs doesn’t have any
lyrics (e.g. most classical pieces, some soundtracks
and ambient songs) and the lyrics might come in
any language (even several intermixed). Therefore
you would need to obtain lyrics from most of the
songs in the library, but which aren’t available to
the streaming services. I would guess that at most
10% of songs have lyrics available.

But the lyrics could also be an indicator whether
a song is a hit or not. For example the song ” Demo
(Letzter Tag)” from Grénemeyer is not very inter-
esting when analyzing the musical structure and
content (if you don’t speak German, you should try
to find out why the song is liked by many fans just
by listening). But the lyrics of this song are poetry
put into a song, making it difficult to analyze and
to rate.

2.9 Similar bands analysis

In order to analyze how similar two bands are, you
could use the audio data to determine various pa-
rameters and compare them. This is still very diffi-
cult, it is quite easier to use metadata which is pro-
vided by the music metadata services (like AMG)
or mine this information from the Internet. E.g.
Amazon has calculated all such information from
user purchases. If you go to the Amazon web page
and select an artist page (by clicking on the band
name), Amazon proposes similar bands. For Metal-
lica it e.g. proposes Iron Maiden, AC/DC, Slayer,
Megadeth, Guns N’ Roses, Anthrax, Judas Priest
and Motorhead. For Queen it proposes Freddie
Mercury, The Who, Genesis, Pink Floyd, Super-
tramp, Deep Purple, Montserrat Caballe and Thin
Lizzy. The bad thing about such mined information
is usually that the count of connected artists is usu-
ally limited; there are usually quite more than eight
bands which are similar to a given band. Of course
streaming media services could generate such infor-
mation also on their own using information about
what bands each user listen to.

2.10 Emotional metadata (arousal /
valence)

One important aspect of a song is what emotional
response it invokes in a given listener. The problem
is of course that one song can produce different emo-
tions for different persons, as each one always listens
to the song in a given context. E.g. a song that you
heard when first meeting your loved one will be per-
ceived within that context. As it is impossible to
automatically determine or even define the context
of each and every user, it need to be enough to find
some objective description of a song. It would be
very helpful if we would know that a specific song
is sad, happy or relaxing. Most research agrees to
a 2D valence-arousal emotion space, which is often
depicted as a circle. While the arousal of a song
can be detected from the tempo, loudness level and
timbre of a song quite well, the valence could be
related to the used scale and harmony. But esti-
mating good values for the valence of a song is still
a difficult task.

Usually each quarter of the mentioned circle will
receive three possible values (which should be only
used as an internal description, as they often do not
map very well to user made descriptions). With
negative arousal and valence usually the values
sad, bored and sleepy are associated, with positive
arousal and negative valence the following terms are
used: annoying, angry and nervous. For negative
arousal and positive valence you would get relaxed,
peaceful and calm. And for arousal and valence
both positive, descriptions would be excited, happy
and pleased.

Having such information would greatly help in
providing good recommendations based on a given
song, as all following songs could have a similar
emotional response.

One additional thought, the arousal and valence
parameters could of course change within a song,
so a song which starts happy could end very sadly.
It would be very difficult to map such a progress
into metadata. Most often it will be helpful enough
to know if the song has mostly a given emotional
response.

2.11 Social metadata generation

Last.fm, one of the oldest player in the streaming
business, is based on social metadata. The data
(called tags, which are textual descriptions) have no
special format. Any registered user is able to add
a tag to a song, or increase the value of an existing
tag. Additionally the user is able to like the song or

Page 5

to dislike the song. There are two disadvantages of
this scheme, first of all the tags are not grouped or
named regarding a specific scheme. Often two tags
are telling the same information, e.g. some tags are
just existing tags which are translated into a dif-
ferent language. Also there is no way to determine
the group of the tag (whether tag is a genre tag,
a band tag or something else). Further, the num-
ber and values of tags decreases quite fast as soon
the song gets more unpopular, therefore the qual-
ity of the metadata is not the same for all songs.
Usually there is no problem with users which in-
troduce wrong or bad metadata into the system, as
the value of their metadata would be pretty low.

Anyway, having metadata information specified
by users is a great tool, as they can provide some
higher-level semantic descriptions which cannot be
generated by algorithms. For example whether a
song is a ballad, in which language(s) the lyrics
are or whether it is perceived as sad is often not
provided by commercial metadata providers. Also
the correction of genre information of a given song
could help to own high quality metadata for the
available songs.

2.12 Conclusion

All the described algorithms are actively re-
searched, but none are already ready for production
use. Also some other algorithms might be useful,
like detection of Live recordings, etc., but aren’t of
great interest so far. Several years will pass until
stable algorithms will be available for recommenda-
tion engines.

Therefore other information should be used in
recommendation engines for now. But as soon as
any of the research fields has results which pro-
duce information at least as good as human experts,
these additional information should of course be in-
tegrated in the existing code base.

3 User centric recommenda-
tion approach

3.1 Musical knowledge of the user

The problem on interfacing with the users are the
different levels of music understanding. While some
people (e.g. musicians) can clearly tell what they
like or dislike on a specific song (qualitative), the
broad crowd will only be able to tell how much they
like a song (quantitative). Therefore the general

user interface should target to simpleness, but of-
fering advanced controls to more advanced users.
Therefore 1 will propose different user interface
methods for creating playlists in the next section.

3.2 Ideal music retrieval system

So the basic question is what would be an ideal
music retrieval /recommendation system as part of
a streaming radio station?

As a minimum requirement all played songs in a
playlist should be normalized to a given reference
level, so that the user doesn’t need to change vol-
ume after a new song starts to playback. If the user
chooses to play a whole album, the normalization
should be applied to the whole album instead of the
individual song.

Additionally a kind of car playback mode should
be implemented, which will be most helpful for clas-
sical pieces. Most radio stations will add some kind
of compression to the broadcasted songs, as it will
adjust parts with a too low loudness to a better au-
dible level. Especially in noisy environments (car,
train, etc.) this would help to enjoy the music with-
out changing the volume constantly.

Of course it should mainly play songs that the
user probably likes and the songs should roughly
belong to the same genre. Also the speed and
dynamics of the songs should not vary too much.
All these points are also valid for over-the-air ra-
dio stations. In such commercial over-the-air radio
stations, usually playlist managers will provide a
harmonious mix of songs which are selected on the
basis of the playlist managers’ experience.

The ideal system should be as good as a com-
mercial radio station, but could even be better as
it will be able to learn the preferences of the lis-
tener. Therefore the first thing which could be im-
proved using a streaming radio station is that every
user can receive its own individual playlist, which is
optimized regarding his preferences. By using ma-
chine learning and recommender systems it should
be possible to propose only songs which the user
likes with a high probability.

To help the user with the transition of a preferred
over-the-air radio station to a streaming radio sta-
tion, the user should be able to specify such a pre-
ferred radio station on the first registration of the
service. Then ratings of a wide range of songs can
be directly applied to the users’ preference statis-
tics. On the other hand a radio channel which offers
the same kind of music as the appropriate over-the-
air channel could be provided.

Page 6

For that the service could get the song informa-
tion from the over-the-air stations either by meta-
data ripping (most stations are sending the song
title and artist with the actual music stream) or
by using audio fingerprint algorithms. The service
doesn’t need to monitor the station 24/7, taking
10 seconds of audio every now and then will usu-
ally do in order to receive a good fingerprint result.
Metadata are usually sent with the first package
of a Shoutcast stream, so connecting from time to
time will also deliver song information (in what-
ever format, as the texts transmitted on Shoutcast
streams have no standard artist/title formatting).
Using fingerprinting technology has an advantage
over the mere collection of stream metadata, as it
will identify a specific version of song more accu-
rately, as it would be possible that there are several
versions of a song which have the same title and
artist (e.g. dance version vs. live version vs. radio
edit version) and fingerprinting will determine the
exact version of the given song.

Additionally, the user should be able to start a
radio channel constructed from various information.
One possible request would be to play songs within
a given genre (main-genres and also sub-genres), in
this case the service should propose a wide vari-
ety of songs within the genre. Using the user rat-
ings, the service would adapt to the user’s prefer-
ences fast. Another possibility would be to specify
an artist or band; in that case songs from similar
groups should be played. Anyway, the similarity
(or neighborship) of artists should not be defined
too tightly, as otherwise only songs from a handful
of bands will be played. As a third possibility the
user should be able to specify a song, on which basis
he wants to listen to similar songs. This is a quite
difficult undertaking, as the service doesn’t know
the reasons why the user proposed the given song.
A good way to find out what the user expects from
the service, tags of the songs could be displayed
of which the user chooses one or several tags which
are important for him regarding the given song. For
this a perfect set of standardized tags for each song
would be necessary. Some tags could be generated
automatically using algorithms (see previous chap-
ters), but some need human specification (from ei-
ther users, music publishers or metadata providers,
e.g. the genre Soundtrack could most often not be
autodetected). As an example we have a look at
the tags from last.fm for the song ”Nothing Else
Matters” from Metallica. It defines several genres
(heavy metal, metal, rock, hard rock); further some
additional descriptions (ballad, emotional, guitar,
guitar solo, male vocalists, melancholic, sad, slow,

90s) which could be autogenerated in the future us-
ing algorithms and metadata from the songs. Any-
way, generating such tags is a hard task and al-
gorithms still fail on quite some songs, generating
wrong tags. Further, some tags (e.g. Christmas,
Children and Soundtrack) could not typically be
detected by algorithms, as some background knowl-
edge would be necessary. A fourth operation mode
could be specifying a set of tags (e.g. Jazz, 90s,
Slow) from a given set of tags. This is a more gener-
alized version of the genre radio (as genre is usually
also a tag of a song). This also requires a perfect
standardized set of tags for all songs used.

At the time the user prefers streaming radio over
the normal radio, any radio like extensions be-
side the music should be activatable by the user.
The most important non-music extension would be
news, configurable for when it should be send (e.g.
each full half hour) and what to be send (world
news, local news, weather, traffic, etc.). Also other
informational shows like movie reviews (or, if pre-
ferred by the user, book reviews), etc. could be
aired as an option. Therefore the user would be
able to create a fully customized version of his ra-
dio, playing all the music he loves and only sending
information he wants.

Theoretical extensions, which would be more
science fiction than the other interface proposals,
would be to generate playlists depending on the cur-
rent time/date or location of the user. Also as the
mood of the user changes from situation to situa-
tion, this could also be reflected in the playlist.

Additionally, an ideal service would also respond
to relative change requests of the user (e.g. slower,
more piano and sadder). Anyway, this is nothing
which would be feasible within the next 5-10 years,
as it not only require tags as flags, but tags as ra-
tional values (e.g. a speed value, a value of how
much content of each possible instrument is in the
song and an emotional value). Letting users vote
about these values would be very difficult, as there
is no practicable way to measure this objectively
(it is hard to tell whether one song is really sadder
than the other).

These proposals are just a wish list how an in-
terface of an ideal recommender system would act
like, but doesn’t explain how. Chapter 4 will try
to analyze how to find an ideal individual playlist
with the techniques available today.

Page 7

3.3 Acceptance of User Interface De-
sign (GUI)

The interface for selecting a new radio station
(playlist generation) should be as convenient as pos-
sible for the user, showing only options which are
helpful for creating the list. Different modes, as de-
scribed in the previous chapter, should be presented
with as few clicks as possible. An advanced form
could offer additional options like how distant the
songs of the playlist may be regarding the specified
song origin (depending on a given distance metric
of two songs).

While playback, the buttons that will be most
useful for the user are the ”skip to the next song”
and rating button(s). Of course the album cover,
artist and song title should always be displayed.

Neither skipping of a song nor letting it play to
the end should impose any rating information from
the user about the song. Letting it play can’t tell
anything, because the user could have left the room
and let the service play unattended. Skipping a
song could have various reasons (e.g. user has heard
the song somewhere else lately and doesn’t want to
hear it again right now, the user is currently in a
different mood, etc.). Therefore it is not possible
to reliably educe something from the skipping of a
song.

One of the important questions is: should one
or more rating buttons be presented? Usually at
least one button is available, the ”love it” button
for marking songs that are preferred by the user.
Most often also a ”hate it” button is present to rate
songs that the user strongly dislike. I would argue
for a more differentiated system, which offers five
states (best presented with thumb signs), thumb
up, thumb medium up, thumb neutral, thumb
medium down and thumb down. This needs to be a
compromise between the user’s ability to decide for
a given rating (which will be more difficult if there
are more possible ratings, e.g. an integer value be-
tween 0 and 100) and the strong wish that the user
rates every song played by the service (which is only
possible when the user will be able to specify his
emotion about the song more detailed). As mu-
sic is strongly subjective and emotional, no music
analysis algorithms will ever be able to find a good
set of songs for a specific user, as two users who
love song A could have different emotions about
song B (whereas an algorithm would always work
deterministic). Only a dedicated recommendation
system based on machine learning using rating data
from a large number of users will have the desired
effect. Therefore the machine learning system needs

as many and as detailed data as possible for creat-
ing recommendations that a specific user will like.
Offering five buttons seems to be too much to de-
cide upon by the user at first glance, but the user
need to think about it anyway if he chooses whether
to use the ”love it” /”hate it” button or not. Using
five categories, any song of the highest two cate-
gories will be great to listen to for the given user,
the third category should only be played for newly
released songs (where no sufficient rating data is
available), which perhaps need to be reheard sev-
eral times (as a user will sometimes like a song bet-
ter when he hear it more often). If a song gets rated
twice, the second rating should always overwrite the
first rating.

Quite some users own HIFI devices that connect
to the streaming services. Even though some ser-
vices offer family accounts, it is not easily possible
to set the active user in the GUI via 1-2 clicks. Most
often the current user needs to be logged out and
the new one has to enter all his credentials anew.
Therefore songs are probably often learned as pre-
ferred, which belongs to a different family member
account.

4 Basics of a recommendation
system

This chapter discusses some implementation details
of a possible ideal recommendation scheme.

4.1 Volume normalization

In order to deliver all songs at a given volume level,
it is at first necessary to determine the maximum
loudness of each song in the system. Very simple
techniques like peak detection will not show the de-
sired results. It is better to use at least a RMS ap-
proach or even better the ReplayGain standard (see
link in the reference section). Once the maximum
loudness of each song is determined and stored in a
database, it is possible to bring all played songs to
a specified reference level (e.g. a song with -10 dB
maximum loudness needs to add 4 dB for the whole
song in order to end up at the given reference level
of -6 dB).

The amplification is performed straight forward
(a clipping prevention should be applied and after-
wards some dither should be added). This can be
performed in time domain, thus the speed should
be sufficient even for a web player (unless the de-
coding occurs in hardware though, in that case the
gain factor should be incorporated into the audio

Page 8

Dynamic Range Compression

Output Level (dB)
N = N
(5] o

)
S

-25

Threshold -16 dB, Ratio 4:1

30 . . A A
-30 25 -20 -15 -10 5 0
Input Level (dB)

Figure 2: Dynamic Range Compression

file as metadata if the web player supports the ex-
tra metadata — or as an extra encoded audio file in
all other cases).

4.2 Dynamic Range Compression

Most radio stations will apply Dynamic Range
Compression (DRC) to the broadcasted material.
Even though the dynamic range of a song will suffer,
this has an advantage for the casual radio listener,
which doesn’t listen actively to the radio in front
of an HIFI device or using headphones. The re-
duced dynamic range removes the necessity to turn
the volume up and down constantly. E.g. a clas-
sical piece could have a very high dynamic range;
parts with low loudness are intermixed with parts
of high loudness. In a car, the listener needs to ad-
just the volume, otherwise the loud parts would be
too loud or the quiet parts would be too quiet (or
even inaudible). Playback in the car would be one
extreme, but even working while listening to the
radio would be difficult, as the ambient noise will
prevent the reception of the quiet parts. Therefore
it might be a good idea to offer the possibility to
have the dynamic range compressed (in one or two
steps), or to playback the audio as is (as preferred
by the listener and/or used device). As this pro-
cessing would take quite some processing power, a
good solution would be to store each song in two
or three versions, one original and one or two with
reduced dynamics (low compression and high com-
pression). In figure 2 an example of a compression
curve is shown, even though the best threshold po-
sition, ratio and gain for a specific use needs to be
determined. On playback the selected version of the
song needs to be streamed. As many newly released

songs already have applied a high compression, an
auto-detection of the original dynamic range of a
song could be helpful in order to create an adaptive
scheme for compression.

4.3 Genres

Automatic genre detection is still a quite difficult
field of Digital Signal Processing. Even though
some results have been obtained, it is still not ro-
bust enough to use unattended in a production en-
vironment. Even more, some genre information
can only obtained by additional metadata from the
music company or from other human interaction
(e.g. Christmas, Children and Soundtrack). There-
fore it will not be possible to get around retrieving
the information from commercial music metadata
databases, which specify one (or sometimes several)
tags for the genre of the song. Quite often the given
genre of a song is just the most used genre of the
artist or the genre of the album, so the genre infor-
mation could be wrong for individual songs. Fur-
thermore, these tags are flags, either the song is of
that genre or not. Algorithmic determined genres
could provide a range e.g. between 0 and 1, where
0 denotes that the song is not of the given genre at
all and 1 that the song is of the genre. That way, a
song could be of several genres, each of them more
or less. E.g. a song can be 80% Jazz, 30% Pop
and 10% Rock (the values does not need to add up
to 100%, for that the values need to be normalized
first).

Genres are a quite important part of the playlist
generation, as users usually don’t want for stray too
far away from the originally specified genre, some-
one who specified pop doesn’t necessarily want to
have classical music in his playlist.

4.4 Band similarity

Most recommender systems offer radio stations or
playlists which originate from an artist or band.
Most often songs of that band and related bands
are played. Related bands are bands which per-
form similar music. To determine related bands, it
would be quite difficult to identify them by compar-
ing the similarity in their music (as it is rather dif-
ficult to define a similarity measurement of songs).
Therefore most companies will use pre-calculated
sets of artists (e.g. defined in the metadata of AMG
or on the webpages of Amazon), which are either
based on collaborative filtering (if many users like
two bands, they will most probably be related) or
manually specified by some experts.

Page 9

Sometimes such information is obtained by data
mining on the internet to see how often two bands
are specified in a context (e.g. Amazon). The band
similarity can also be directly determined by per-
forming an analysis on the rating information of
the streaming service if a good recommendation en-
gine (machine learning) is implemented. But in this
case, the similarity can be determined based on a
specific song of the band instead of the artist or
band.

4.5 Repetition rate of songs

Of course songs should not be re-played within quite
a while. The repetition rate should orientate at the
number of songs played between the last playback
time and now. Also the rating of the given song
should be intermixed, so that highly rated songs
are played a bit more often than mediocre rated
songs (and poorly rated songs should not be played
at all).

So we can use e.g. a linear or Gaussian transi-
tion of probabilities from 0 to 1 for a given number
of songs that played between two occurrences of
the some song. From a given number of songs in-
between (probably around 10000), the probability
will stay at 1.

4.6 Tags

As we have seen in chapter 2, it is difficult to pro-
vide tags for the songs. There are more important
tags than others, like genre (multiple genres if nec-
essary). For now it is not feasible to generate ra-
tional values using algorithms, these will still take
several years of research, even if there are great ad-
vances in the last years. Some few values can al-
ready be determined right now, like song speed and
dynamics (see last chapter). So even if it would be
nice to have a full set of tags, this can only be per-
formed by using a flag for each tag and let (expert)
humans decide the setting for each tag. If enough
money could be provided, this information could be
created manually for the important 10% of all songs
(these that actually will be played in every genre,
etc.) by using services like Mechanical Turk from
Amazon. This would result in the advantage of hav-
ing a standardized set of tags. Last.fm offers user
generated tags, but quite often the tags are doubled
by different spellings or translations. Therefore it is
difficult to make use of such tags, even more as the
data is only a pile of tags and thus the category of
the tag is unknown (genre, decade, emotional state,
etc.).

Finally, some other types tags can be automati-
cally generated by the metadata of the song, if avail-
able (e.g. the release date forms the 80s, 90s, 00s,
10s tags, etc.).

Anyway, having a set of (standardized) tags
would be very helpful to communicate with the user
about his preferences. E.g. on starting a radio
channel basing on a specific song, the user could se-
lect the tags associated with the song that resemble
the (subjective) important features of the specified
song and thus improve the recommendation result.

4.7 User recommendations

As in every field of art it is nearly impossible to
let a computer predict how a user responds to a
specific piece of art, as art is highly subjective. No
analysis algorithms in the next 20 years will be able
to exactly predict whether a user likes a song or
not. As described in chapter 3 we therefore need
a scheme in which users are able to specify ratings
for songs, the more (and more detailed) ratings the
better the result that a recommendation engine can
deliver.

If we have rating information for a song (either
directly via input from the user or via the result
of a recommendation algorithm), the song should
be played next with a probability depending on its
rating. If e.g. the rating information is stored as
values between -2 (hate it) and 2 (love it), the play
probability would be %lllﬁgl if the value is larger
than zero and zero otherwise (with alpha of << 1).
At the beginning all songs will have a rating of 0,
thus every song will have the same probability of
alpha to be chosen next.

4.8 Selection of songs

The most important step for choosing songs of a
playlist is to filter out songs that the user most
probably doesn’t want to hear. This is exactly what
radio stations do, they play hits all the time to keep
the listener in the channel as long as possible in or-
der to have the possibility to also send them adver-
tisements. Therefore, the user expects from a radio
(over-the-air as well as streamed) that every song
is a potential hit and has the chance to be liked by
him.

Most streaming services have statistics on how
often a song is played (and eventually liked). If this
list is sorted by their playback count (this should be
applied to a genre/tag filtered song list - on band
similarity filtering, each band should be processed

Page 10

Song Popularity (Sorted by playback count)
90.000 T T T

T
All Songs (Unfiltered)

80.000 Pop Songs 4
Jazz Songs

70.000 -

60.000 -

50.000 -

Play Count

40.000

30.000 -

20.000 -

10.000 b

o . !
0 50.000 100.000 150.000
Song Number

L L
200.000 250.000 300.000

Figure 3: Sorted playback counts of songs

separately), usually a half of a bell shaped curve will
show up, which looks like a Gaussian distribution.

Please see figure 3 for an illustration of such
curves (artificially created without any actual data)
and figure 4 for an example for the band Super-
tramp (retrieved from the Simfy application - it
wasn’t possible to retrieve a list for a specific genre
or for similar bands). If we assume the average at
song position 0, we are able to calculate the stan-
dard deviation. The ”768-95-99.7” rule tells us that
68% of all playbacks are within one standard devi-
ation and 95% of all playbacks are within two stan-
dard deviations. Therefore we want to find a point
(a song number in the sorted list), up to which we
will play songs. All other songs, which belong to the
so called Long Tail, have in sum around the same
number of playback counts, but are only heard by
very few people. The amount of songs which should
be taken into account could be a parameter of the
user, perhaps he wants to explore more unknown
music (and thus not listening to the top hits at all).
Anyway, from the 20-30 million songs that are of-
ten available for streaming, probably far less than
1 million songs should actually be used as a basis
for playlist generation.

In the Supertramp example, we roughly calculate
a value of 9,7 as standard deviation (without having
information about additional songs behind position
30). This means that the first 10 songs are within
one standard deviation (and this are roughly 68,3
% of all played songs). The first 20 songs are played
roughly at 95,4 % of the time.

As another sight on the problem, we can just
use the (normalized) number of playbacks for a
given song as probability on whether the given song
should appear in the playlist.

The song play count should only be increased if at
least 80% of the song are played and the user rates

45449
41491
36139
25514
20605
18315
17328
11880
11108
8512
8086
8677
8321
381
6330
5823
4373
4154
3803
ar1e
3312
3046
2752
2547
2527
2329
2087
2062
2053
2012

The Logical Song (Live At Pavillon de Paris/1878)

Breakfast In America
Even In The Quistest Moments (Album Yersion)

Don't Leave Me Now

A Soapbox Opera

Just Another Nervous Wrack (2010 Remastered)
Easy Doas It

Babaji
Casual Conversations (2010 Remastered)

Gone Hollywood (2010 Remasterad)
Lord Is It Mine (2010 Remastared)
Child Of Vision (2010 Remastered)
Oh Darling (2010 Remastered)
Lover Boy

Ain't Nobody But Me

Take The Long Way Home
Cannonball

Give A Little Bit

Dreamer
Crime Of The Century

Rudy
Sister Moonshina

Goodbye Stranger
Bloody Well Right
It's Raining Again
Hide In Your Shell
Fram Mow On
Fool's Overture
Crazy

School

1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
B
9
20
1
22
23
24
25
26
27
28
29
30

Figure 4: Sorted playback count for Supertramp

Page 11

the song at least with 0 (if using a rating scheme
from -2 to 2). It should not change if it just played
through, but it should be increased if the song is ex-
plicitly searched for or specified by different means
(e.g. by using a personal non-public playlist).

Finally, it might be a good idea to capture the
playback count over a specific interval instead of
starting from the beginning of the service. A hit
from today could be out of fashion within some
months. Therefore checking only the last few
months of logs would prevent playing songs that
no one will hear anymore.

4.9 Randomization

If the recommendation matrix hasn’t changed
(which will be updated probably every night, if not
a kind of online update mechanism is used), the
results would be always the same if not using any
kind of randomization. The randomization is part
of the probabilities given for the repetition rate of
songs and selection of songs.

Therefore a random variable will model the dif-
ferent outcome for each new playlist generation of
the same category (genre, etc.).

Basically introducting a random number e.g. in
the interval [0.8; 1] could produce the necessary ran-
domization.

4.10 Paid song promotion

Finally it would be possible to promote songs of mu-
sic publishers to users which will likely also love the
promoted song. Then the music publisher will only
be invoiced for fully played songs (>80 %) which
are either not rated at all or not rated worse than
average (comparable to CTR from normal web pub-
lishing advertisements). Of course impression based
invoicing (CPI) would be possible, too.

The implementation would be based on an arti-
ficially created user which likes a number of songs
which are similar to the promoted song. Then the
promoted song will receive a rating which has a
rating which is higher than normally possible to
accommodate the problem that a single user will
influence the recommendation only very little. The
exact value depends on the size of the matrix and
thus isn’t constant.

4.11 Conclusion

With the described minor modifications most
streaming services could be improved to produce

better recommendations for their users. In the fu-
ture more exciting possibilities will arise to improve
the recommendation results even further. Until
then, only basic algorithms as those proposed are
available. Anyway, even these will improve the ma-
jority of streaming services so that they are able to
become true competitors to over-the-air radio sta-
tions.

References

[1] Barbedo, J.G.A. and Lopes, A. 2007. Auto-
matic Genre Classification ofMusical Signals.
EURASIP Journal on Advances in Signal Pro-

cessing

[2] Knees, P. and Schedl, M. 2013. A survey
on music similarity and recommendation from
music context data. ACM Trans. Multimedia
Comput. Commun. Appl. 10, 1, Article 2 (De-
cember 2013), 21 pages.

[3] Schedl, M. 2013. Ameliorating Music Recom-
mendation. MoMM2013, 2-4 December, 2013,
Vienna, Austria

[4] Schedl, M., Pohle, T., Knees, P. and Widmer,
G. 2011. Exploring the music similarity space
on the Web. ACM Trans. Inf. Syst. 29, 3, Ar-
ticle 14 (July 2011), 24 pages.

[5] Yang, Y.-H. and Chen, H. H. 2012. Machine
recognition of music emotion: A review. ACM
Trans. Intell. Syst. Technol. 3, 3, Article 40
(May 2012), 30 pages.

[6] Ng, A. Machine Learning, Stanford University.
https://www.coursera.org/learn/machine-
learning

[7] Robinson, D. ReplayGain, Wikipedia.
http://en.wikipedia.org/wiki/ReplayGain

[8] Mechanical Turk. A marketplace for work,
Amazon. https://www.mturk.com/

Page 12

